HDD (HARD DISK DRIVE)




A hard disk drive (HDD; also hard drive or hard disk) is a non-volatile, random access digital magnetic data storage device. It features rotating rigid platters on a motor-driven spindle within a protective enclosure. Data is magnetically read from and written to the platter by read/write heads that float on a film of air above the platters. Introduced by IBM in 1956, hard disk drives have decreased in cost and physical size over the years while dramatically increasing in capacity.

Driven by areal density doubling every two to four years since their invention, HDDs have changed in many ways. A few highlights include:

* Capacity per HDD increasing from 3.75 megabytes to greater than 1 terabyte, a greater than 270-thousand-to-1 improvement.
* Size of HDD decreasing from 87.9 cubic feet (a double wide refrigerator) to 0.002 cubic feet (2½-inch form factor, a pack of cards), a greater than 44-thousand-to-1 improvement.
* Price decreasing from about $15,000 per megabyte to less than $0.0001 per megabyte ($100/1 terabyte), a greater than 150-million-to-1 improvement.
* Average access time decreasing from greater than 0.1 second to a few thousandths of a second, a greater than 40-to-1 improvement.
* Market application expanding from general purpose computers to most computing applications including consumer applications.

HDDs record data by magnetizing ferromagnetic material directionally. Sequential changes in the direction of magnetization represent patterns of binary data bits. The data are read from the disk by detecting the transitions in magnetization and decoding the originally written data. Different encoding schemes, such as modified frequency modulation, group code recording, run-length limited encoding, and others are used.

A typical HDD design consists of a spindle that holds flat circular disks, also called platters, which hold the recorded data. The platters are made from a non-magnetic material, usually aluminum alloy, glass, or ceramic, and are coated with a shallow layer of magnetic material typically 10–20 nm in depth, with an outer layer of carbon for protection. For reference, a standard piece of copy paper is 0.07–0.18 millimetre (70,000–180,000 nm)

The platters are spun at speeds varying from 4,200 rpm in energy-efficient portable devices, to 15,000 rpm for high performance servers. Information is written to, and read from a platter as it rotates past devices called read-and-write heads that operate very close (tens of nanometers in new drives) over the magnetic surface. The read-and-write head is used to detect and modify the magnetization of the material immediately under it. In modern drives there is one head for each magnetic platter surface on the spindle, mounted on a common arm. An actuator arm (or access arm) moves the heads on an arc (roughly radially) across the platters as they spin, allowing each head to access almost the entire surface of the platter as it spins. The arm is moved using a voice coil actuator or in some older designs a stepper motor.

The magnetic surface of each platter is conceptually divided into many small sub-micrometer-sized magnetic regions referred to as magnetic domains. In older disk designs the regions were oriented horizontally and parallel to the disk surface, but beginning about 2005, the orientation was changed to perpendicular to allow for closer magnetic domain spacing. Due to the polycrystalline nature of the magnetic material each of these magnetic regions is composed of a few hundred magnetic grains. Magnetic grains are typically 10 nm in size and each form a single magnetic domain. Each magnetic region in total forms a magnetic dipole which generates a magnetic field.

For reliable storage of data, the recording material needs to resist self-demagnetization, which occurs when the magnetic domains repel each other. Magnetic domains written too densely together to a weakly magnetizable material will degrade over time due to physical rotation of one or more domains to cancel out these forces. The domains rotate sideways to a halfway position that weakens the readability of the domain and relieves the magnetic stresses. Older hard disks used iron(III) oxide as the magnetic material, but current disks use a cobalt-based alloy

A write head magnetizes a region by generating a strong local magnetic field. Early HDDs used an electromagnet both to magnetize the region and to then read its magnetic field by using electromagnetic induction. Later versions of inductive heads included metal in Gap (MIG) heads and thin film heads. As data density increased, read heads using magnetoresistance (MR) came into use; the electrical resistance of the head changed according to the strength of the magnetism from the platter. Later development made use of spintronics; in these heads, the magnetoresistive effect was much greater than in earlier types, and was dubbed “giant” magnetoresistance (GMR). In today’s heads, the read and write elements are separate, but in close proximity, on the head portion of an actuator arm. The read element is typically magneto-resistive while the write element is typically thin-film inductive.

The heads are kept from contacting the platter surface by the air that is extremely close to the platter; that air moves at or near the platter speed. The record and playback head are mounted on a block called a slider, and the surface next to the platter is shaped to keep it just barely out of contact. This forms a type of air bearing.

In modern drives, the small size of the magnetic regions creates the danger that their magnetic state might be lost because of thermal effects. To counter this, the platters are coated with two parallel magnetic layers, separated by a 3-atom layer of the non-magnetic element ruthenium, and the two layers are magnetized in opposite orientation, thus reinforcing each other. Another technology used to overcome thermal effects to allow greater recording densities is perpendicular recording, first shipped in 2005, and as of 2007 the technology was used in many HDDs.

A typical hard disk drive has two electric motors; a disk motor that spins the disks and an actuator (motor) that positions the read/write head assembly across the spinning disks.

Opposite the actuator at the end of the head support arm is the read-write head (near center in photo); thin printed-circuit cables connect the read-write heads to amplifier electronics mounted at the pivot of the actuator. A flexible, somewhat U-shaped, ribbon cable, seen edge-on below and to the left of the actuator arm continues the connection to the controller board on the opposite side.

The head support arm is very light, but also stiff; in modern drives, acceleration at the head reaches 550 g.

Modern drives also make extensive use of Error Correcting Codes (ECCs), particularly Reed–Solomon error correction. These techniques store extra bits for each block of data that are determined by mathematical formulas. The extra bits allow many errors to be fixed. While these extra bits take up space on the hard drive, they allow higher recording densities to be employed, resulting in much larger storage capacity for user data. In 2009, in the newest drives, low-density parity-check codes (LDPC) are supplanting Reed-Solomon. LDPC codes enable performance close to the Shannon Limit and thus allow for the highest storage density available

The capacity of hard disk drives is given by manufacturers in megabytes (1 MB = 1,000,000 bytes), gigabytes (1 GB = 1,000,000,000 bytes) or terabytes (1 TB = 1,000,000,000,000 bytes). This numbering convention, where prefixes like mega- and giga- denote powers of 1000, is also used for data transmission rates and DVD capacities. However, the convention is different from that used by manufacturers of memory (RAM, ROM) and CDs, where prefixes like kilo- and mega- mean powers of 1024.

Advertised capacity
by manufacturer
(using decimal multiples)
Expected capacity
by consumers in class action
(using binary multiples)
Reported capacity
Windows
(using binary
multiples)
Mac OS X 10.6+
(using decimal
multiples)
With prefix Bytes Bytes Diff.
100 MB 100,000,000 104,857,600 4.86% 95.4 MB 100.0 MB
100 GB 100,000,000,000 107,374,182,400 7.37% 93.1 GB, 95,367 MB 100.00 GB
TB 1,000,000,000,000 1,099,511,627,776 9.95% 931 GB, 953,674 MB 1,000.00 GB

 

Current hard disk form factors

Form factor Width Height Largest capacity Platters (Max)
3.5″ 102 mm 19 or 25.4 mm 4 TB (2011) 5
2.5″ 69.9 mm 7, 9.5, 11.5, or 15 mm 1.5 TB (2010) 4
1.8″ 54 mm 5 or 8 mm 320 GB (2009) 3

Obsolete hard disk form factors

Form factor Width Largest capacity Platters (Max)
5.25″ FH 146 mm 47 GB(1998) 14
5.25″ HH 146 mm 19.3 GB (1998) 4
1.3″ 43 mm 40 GB(2007) 1
1″ (CFII/ZIF/IDE-Flex) 42 mm 20 GB (2006) 1
0.85″ 24 mm 8 GB(2004) 1
Rotational speed
[rpm]
Average
latency [ms]
15000 2
10000 3
7200 4.16
5400 5.55
4800 6.25

An HDD‘s Average Access Time is its average Seek time which technically is the time to do all possible seeks divided by the number of all possible seeks, but in practice is determined by statistical methods or simply approximated as the time of a seek over one-third of the number of tracks

Defragmentation is a procedure used to minimize delay in retrieving data by moving related items to physically proximate areas on the disk. Some computer operating systems perform defragmentation automatically. Although automatic defragmentation is intended to reduce access delays, the procedure can slow response when performed while the computer is in use.

Access time can be improved by increasing rotational speed, thus reducing latency and/or by decreasing seek time. Increasing areal density increases throughput by increasing data rate and by increasing the amount of data under a set of heads, thereby potentially reducing seek activity for a given amount of data. Based on historic trends, analysts predict a future growth in HDD areal density (and therefore capacity) of about 40% per year. Access times have not kept up with throughput increases, which themselves have not kept up with growth in storage capacity.

Sector interleave is a mostly obsolete device characteristic related to access time, dating back to when computers were too slow to be able to read large continuous streams of data. Interleaving introduced gaps between data sectors to allow time for slow equipment to get ready to read the next block of data. Without interleaving, the next logical sector would arrive at the read/write head before the equipment was ready, requiring the system to wait for another complete disk revolution before reading could be performed.

However, because interleaving introduces intentional physical delays into the drive mechanism, setting the interleave to a ratio higher than required causes unnecessary delays for equipment that has the performance needed to read sectors more quickly. The interleaving ratio was therefore usually chosen by the end-user to suit their particular computer system’s performance capabilities when the drive was first installed in their system.

Average seek time ranges from 3 ms for high-end server drives, to 15 ms for mobile drives, with the most common mobile drives at about 12 ms and the most common desktop type typically being around 9 ms. The first HDD had an average seek time of about 600 ms and by the middle 1970s HDDs were available with seek times of about 25 ms. Some early PC drives used a stepper motor to move the heads, and as a result had seek times as slow as 80–120 ms, but this was quickly improved by voice coil type actuation in the 1980s, reducing seek times to around 20 ms. Seek time has continued to improve slowly over time.

Latency is the delay for the rotation of the disk to bring the required disk sector under the read-write mechanism. It depends on rotational speed of a disk, measured in revolutions per minute (rpm). Average rotational latency is shown in the table below, based on the empirical relation that the average latency in milliseconds for such a drive is one-half the rotational period.

As of 2010, a typical 7200 rpm desktop hard drive has a sustained “disk-to-buffer” data transfer rate up to 1030 Mbits/sec. This rate depends on the track location, so it will be higher for data on the outer tracks (where there are more data sectors) and lower toward the inner tracks (where there are fewer data sectors); and is generally somewhat higher for 10,000 rpm drives. A current widely used standard for the “buffer-to-computer” interface is 3.0 Gbit/s SATA, which can send about 300 megabyte/s (10 bit encoding) from the buffer to the computer, and thus is still comfortably ahead of today’s disk-to-buffer transfer rates. Data transfer rate (read/write) can be measured by writing a large file to disk using special file generator tools, then reading back the file. Transfer rate can be influenced by file system fragmentation and the layout of the files

HDD data transfer rate depends upon the rotational speed of the platters and the data recording density. Because heat and vibration limit rotational speed, advancing density becomes the main method to improve sequential transfer rates. While areal density advances by increasing both the number of tracks across the disk and the number of sectors per track, only the latter will increase the data transfer rate for a given rpm. Since data transfer rate performance only tracks one of the two components of areal density, its performance improves at a lower rate.

* On SCSI hard disk drives, the SCSI controller can directly control spin up and spin down of the drives.

* On Parallel ATA (aka PATA) and Serial ATA (SATA) hard disk drives, some support power-up in standby or PUIS. The hard disk drive will not spin up until the controller or system BIOS issues a specific command to do so. This limits the power draw or consumption upon power on.

* Some SATA II hard disk drives support staggered spin-up, allowing the computer to spin up the drives in sequence to reduce load on the power supply when booting.

Hard disk drives are accessed over one of a number of bus types, including parallel ATA (P-ATA, also called IDE or EIDE), Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), and Fibre Channel. Bridge circuitry is sometimes used to connect hard disk drives to buses that they cannot communicate with natively, such as IEEE 1394, USB and SCSI.

For the ST-506 interface, the data encoding scheme as written to the disk surface was also important. The first ST-506 disks used Modified Frequency Modulation (MFM) encoding, and transferred data at a rate of 5 megabits per second. Later controllers using 2,7 RLL (or just “RLL”) encoding caused 50% more data to appear under the heads compared to one rotation of an MFM drive, increasing data storage and data transfer rate by 50%, to 7.5 megabits per second.

Many ST-506 interface disk drives were only specified by the manufacturer to run at the 1/3 lower MFM data transfer rate compared to RLL, while other drive models (usually more expensive versions of the same drive) were specified to run at the higher RLL data transfer rate. In some cases, a drive had sufficient margin to allow the MFM specified model to run at the denser/faster RLL data transfer rate (not recommended nor guaranteed by manufacturers). Also, any RLL-certified drive could run on any MFM controller, but with 1/3 less data capacity and as much as 1/3 less data transfer rate compared to its RLL specifications.

Enhanced Small Disk Interface (ESDI) also supported multiple data rates (ESDI disks always used 2,7 RLL, but at 10, 15 or 20 megabits per second), but this was usually negotiated automatically by the disk drive and controller; most of the time, however, 15 or 20 megabit ESDI disk drives were not downward compatible (i.e. a 15 or 20 megabit disk drive would not run on a 10 megabit controller). ESDI disk drives typically also had jumpers to set the number of sectors per track and (in some cases) sector size.

Modern hard drives present a consistent interface to the rest of the computer, no matter what data encoding scheme is used internally. Typically a DSP in the electronics inside the hard drive takes the raw analog voltages from the read head and uses PRML and Reed–Solomon error correction to decode the sector boundaries and sector data, then sends that data out the standard interface. That DSP also watches the error rate detected by error detection and correction, and performs bad sector remapping, data collection for Self-Monitoring, Analysis, and Reporting Technology, and other internal tasks.

SCSI originally had just one signaling frequency of 5 MHz for a maximum data rate of 5 megabytes/second over 8 parallel conductors, but later this was increased dramatically. The SCSI bus speed had no bearing on the disk’s internal speed because of buffering between the SCSI bus and the disk drive’s internal data bus; however, many early disk drives had very small buffers, and thus had to be reformatted to a different interleave (just like ST-506 disks) when used on slow computers, such as early Commodore Amiga, IBM PC compatibles and Apple Macintoshes.

ATA disks have typically had no problems with interleave or data rate, due to their controller design, but many early models were incompatible with each other and could not run with two devices on the same physical cable in a master/slave setup. This was mostly remedied by the mid-1990s, when ATA’s specification was standardized and the details began to be cleaned up, but still causes problems occasionally (especially with CD-ROM and DVD-ROM disks, and when mixing Ultra DMA and non-UDMA devices).

Serial ATA does away with master/slave setups entirely, placing each disk on its own channel (with its own set of I/O ports) instead.

FireWire/IEEE 1394 and USB(1.0/2.0) HDDs are external units containing generally ATA or SCSI disks with ports on the back allowing very simple and effective expansion and mobility. Most FireWire/IEEE 1394 models are able to daisy-chain in order to continue adding peripherals without requiring additional ports on the computer itself. USB however, is a point to point network and does not allow for daisy-chaining. USB hubs are used to increase the number of available ports and are used for devices that do not require charging since the current supplied by hubs is typically lower than what’s available from the built-in USB ports.

External removable hard disk drives offer independence from system integration, establishing communication via connectivity options, such as USB.

Plug and play drive functionality offers system compatibility, and features large volume data storage options, but maintains a portable design.

These drives with an ability to function and be removed simplistically, have had further applications due their flexibility. These include:

* Disk cloning

* Data storage

* Data recovery

* Backup of files and information

* Storing and running virtual machines

* Scratch disk for video editing applications and video recording

* Booting operating systems (e.g. Linux, Windows – a.k.a. Live USB)

External hard disk drives are available in two main sizes (physical size), 2.5″ and 3.5″.

Features such as biometric security or multiple interfaces are available at a higher cost.

A hard disk drive (HDD; also hard drive or hard disk) is a non-volatile, random access digital magnetic data storage device. It features rotating rigid platters on a motor-driven spindle within a protective enclosure. Data is magnetically read from and written to the platter by read/write heads that float on a film of air above the platters. Introduced by IBM in 1956, hard disk drives have decreased in cost and physical size over the years while dramatically increasing in capacity.

Driven by areal density doubling every two to four years since their invention, HDDs have changed in many ways. A few highlights include:

* Capacity per HDD increasing from 3.75 megabytes to greater than 1 terabyte, a greater than 270-thousand-to-1 improvement.
* Size of HDD decreasing from 87.9 cubic feet (a double wide refrigerator) to 0.002 cubic feet (2½-inch form factor, a pack of cards), a greater than 44-thousand-to-1 improvement.
* Price decreasing from about $15,000 per megabyte to less than $0.0001 per megabyte ($100/1 terabyte), a greater than 150-million-to-1 improvement.
* Average access time decreasing from greater than 0.1 second to a few thousandths of a second, a greater than 40-to-1 improvement.
* Market application expanding from general purpose computers to most computing applications including consumer applications.

HDDs record data by magnetizing ferromagnetic material directionally. Sequential changes in the direction of magnetization represent patterns of binary data bits. The data are read from the disk by detecting the transitions in magnetization and decoding the originally written data. Different encoding schemes, such as modified frequency modulation, group code recording, run-length limited encoding, and others are used.

A typical HDD design consists of a spindle that holds flat circular disks, also called platters, which hold the recorded data. The platters are made from a non-magnetic material, usually aluminum alloy, glass, or ceramic, and are coated with a shallow layer of magnetic material typically 10–20 nm in depth, with an outer layer of carbon for protection. For reference, a standard piece of copy paper is 0.07–0.18 millimetre (70,000–180,000 nm)

The platters are spun at speeds varying from 4,200 rpm in energy-efficient portable devices, to 15,000 rpm for high performance servers. Information is written to, and read from a platter as it rotates past devices called read-and-write heads that operate very close (tens of nanometers in new drives) over the magnetic surface. The read-and-write head is used to detect and modify the magnetization of the material immediately under it. In modern drives there is one head for each magnetic platter surface on the spindle, mounted on a common arm. An actuator arm (or access arm) moves the heads on an arc (roughly radially) across the platters as they spin, allowing each head to access almost the entire surface of the platter as it spins. The arm is moved using a voice coil actuator or in some older designs a stepper motor.

The magnetic surface of each platter is conceptually divided into many small sub-micrometer-sized magnetic regions referred to as magnetic domains. In older disk designs the regions were oriented horizontally and parallel to the disk surface, but beginning about 2005, the orientation was changed to perpendicular to allow for closer magnetic domain spacing. Due to the polycrystalline nature of the magnetic material each of these magnetic regions is composed of a few hundred magnetic grains. Magnetic grains are typically 10 nm in size and each form a single magnetic domain. Each magnetic region in total forms a magnetic dipole which generates a magnetic field.

For reliable storage of data, the recording material needs to resist self-demagnetization, which occurs when the magnetic domains repel each other. Magnetic domains written too densely together to a weakly magnetizable material will degrade over time due to physical rotation of one or more domains to cancel out these forces. The domains rotate sideways to a halfway position that weakens the readability of the domain and relieves the magnetic stresses. Older hard disks used iron(III) oxide as the magnetic material, but current disks use a cobalt-based alloy

A write head magnetizes a region by generating a strong local magnetic field. Early HDDs used an electromagnet both to magnetize the region and to then read its magnetic field by using electromagnetic induction. Later versions of inductive heads included metal in Gap (MIG) heads and thin film heads. As data density increased, read heads using magnetoresistance (MR) came into use; the electrical resistance of the head changed according to the strength of the magnetism from the platter. Later development made use of spintronics; in these heads, the magnetoresistive effect was much greater than in earlier types, and was dubbed “giant” magnetoresistance (GMR). In today’s heads, the read and write elements are separate, but in close proximity, on the head portion of an actuator arm. The read element is typically magneto-resistive while the write element is typically thin-film inductive.

The heads are kept from contacting the platter surface by the air that is extremely close to the platter; that air moves at or near the platter speed. The record and playback head are mounted on a block called a slider, and the surface next to the platter is shaped to keep it just barely out of contact. This forms a type of air bearing.

In modern drives, the small size of the magnetic regions creates the danger that their magnetic state might be lost because of thermal effects. To counter this, the platters are coated with two parallel magnetic layers, separated by a 3-atom layer of the non-magnetic element ruthenium, and the two layers are magnetized in opposite orientation, thus reinforcing each other. Another technology used to overcome thermal effects to allow greater recording densities is perpendicular recording, first shipped in 2005, and as of 2007 the technology was used in many HDDs.

A typical hard disk drive has two electric motors; a disk motor that spins the disks and an actuator (motor) that positions the read/write head assembly across the spinning disks.

Opposite the actuator at the end of the head support arm is the read-write head (near center in photo); thin printed-circuit cables connect the read-write heads to amplifier electronics mounted at the pivot of the actuator. A flexible, somewhat U-shaped, ribbon cable, seen edge-on below and to the left of the actuator arm continues the connection to the controller board on the opposite side.

The head support arm is very light, but also stiff; in modern drives, acceleration at the head reaches 550 g.

Modern drives also make extensive use of Error Correcting Codes (ECCs), particularly Reed–Solomon error correction. These techniques store extra bits for each block of data that are determined by mathematical formulas. The extra bits allow many errors to be fixed. While these extra bits take up space on the hard drive, they allow higher recording densities to be employed, resulting in much larger storage capacity for user data. In 2009, in the newest drives, low-density parity-check codes (LDPC) are supplanting Reed-Solomon. LDPC codes enable performance close to the Shannon Limit and thus allow for the highest storage density available

The capacity of hard disk drives is given by manufacturers in megabytes (1 MB = 1,000,000 bytes), gigabytes (1 GB = 1,000,000,000 bytes) or terabytes (1 TB = 1,000,000,000,000 bytes). This numbering convention, where prefixes like mega- and giga- denote powers of 1000, is also used for data transmission rates and DVD capacities. However, the convention is different from that used by manufacturers of memory (RAM, ROM) and CDs, where prefixes like kilo- and mega- mean powers of 1024.

Advertised capacity
by manufacturer
(using decimal multiples)
Expected capacity
by consumers in class action
(using binary multiples)
Reported capacity
Windows
(using binary
multiples)
Mac OS X 10.6+
(using decimal
multiples)
With prefix Bytes Bytes Diff.
100 MB 100,000,000 104,857,600 4.86% 95.4 MB 100.0 MB
100 GB 100,000,000,000 107,374,182,400 7.37% 93.1 GB, 95,367 MB 100.00 GB
TB 1,000,000,000,000 1,099,511,627,776 9.95% 931 GB, 953,674 MB 1,000.00 GB

 

Current hard disk form factors

Form factor Width Height Largest capacity Platters (Max)
3.5″ 102 mm 19 or 25.4 mm 4 TB (2011) 5
2.5″ 69.9 mm 7, 9.5, 11.5, or 15 mm 1.5 TB (2010) 4
1.8″ 54 mm 5 or 8 mm 320 GB (2009) 3

Obsolete hard disk form factors

Form factor Width Largest capacity Platters (Max)
5.25″ FH 146 mm 47 GB(1998) 14
5.25″ HH 146 mm 19.3 GB (1998) 4
1.3″ 43 mm 40 GB(2007) 1
1″ (CFII/ZIF/IDE-Flex) 42 mm 20 GB (2006) 1
0.85″ 24 mm 8 GB(2004) 1
Rotational speed
[rpm]
Average
latency [ms]
15000 2
10000 3
7200 4.16
5400 5.55
4800 6.25

An HDD‘s Average Access Time is its average Seek time which technically is the time to do all possible seeks divided by the number of all possible seeks, but in practice is determined by statistical methods or simply approximated as the time of a seek over one-third of the number of tracks

Defragmentation is a procedure used to minimize delay in retrieving data by moving related items to physically proximate areas on the disk. Some computer operating systems perform defragmentation automatically. Although automatic defragmentation is intended to reduce access delays, the procedure can slow response when performed while the computer is in use.

Access time can be improved by increasing rotational speed, thus reducing latency and/or by decreasing seek time. Increasing areal density increases throughput by increasing data rate and by increasing the amount of data under a set of heads, thereby potentially reducing seek activity for a given amount of data. Based on historic trends, analysts predict a future growth in HDD areal density (and therefore capacity) of about 40% per year. Access times have not kept up with throughput increases, which themselves have not kept up with growth in storage capacity.

Sector interleave is a mostly obsolete device characteristic related to access time, dating back to when computers were too slow to be able to read large continuous streams of data. Interleaving introduced gaps between data sectors to allow time for slow equipment to get ready to read the next block of data. Without interleaving, the next logical sector would arrive at the read/write head before the equipment was ready, requiring the system to wait for another complete disk revolution before reading could be performed.

However, because interleaving introduces intentional physical delays into the drive mechanism, setting the interleave to a ratio higher than required causes unnecessary delays for equipment that has the performance needed to read sectors more quickly. The interleaving ratio was therefore usually chosen by the end-user to suit their particular computer system’s performance capabilities when the drive was first installed in their system.

Average seek time ranges from 3 ms for high-end server drives, to 15 ms for mobile drives, with the most common mobile drives at about 12 ms and the most common desktop type typically being around 9 ms. The first HDD had an average seek time of about 600 ms and by the middle 1970s HDDs were available with seek times of about 25 ms. Some early PC drives used a stepper motor to move the heads, and as a result had seek times as slow as 80–120 ms, but this was quickly improved by voice coil type actuation in the 1980s, reducing seek times to around 20 ms. Seek time has continued to improve slowly over time.

Latency is the delay for the rotation of the disk to bring the required disk sector under the read-write mechanism. It depends on rotational speed of a disk, measured in revolutions per minute (rpm). Average rotational latency is shown in the table below, based on the empirical relation that the average latency in milliseconds for such a drive is one-half the rotational period.

As of 2010, a typical 7200 rpm desktop hard drive has a sustained “disk-to-buffer” data transfer rate up to 1030 Mbits/sec. This rate depends on the track location, so it will be higher for data on the outer tracks (where there are more data sectors) and lower toward the inner tracks (where there are fewer data sectors); and is generally somewhat higher for 10,000 rpm drives. A current widely used standard for the “buffer-to-computer” interface is 3.0 Gbit/s SATA, which can send about 300 megabyte/s (10 bit encoding) from the buffer to the computer, and thus is still comfortably ahead of today’s disk-to-buffer transfer rates. Data transfer rate (read/write) can be measured by writing a large file to disk using special file generator tools, then reading back the file. Transfer rate can be influenced by file system fragmentation and the layout of the files

HDD data transfer rate depends upon the rotational speed of the platters and the data recording density. Because heat and vibration limit rotational speed, advancing density becomes the main method to improve sequential transfer rates. While areal density advances by increasing both the number of tracks across the disk and the number of sectors per track, only the latter will increase the data transfer rate for a given rpm. Since data transfer rate performance only tracks one of the two components of areal density, its performance improves at a lower rate.

* On SCSI hard disk drives, the SCSI controller can directly control spin up and spin down of the drives.

* On Parallel ATA (aka PATA) and Serial ATA (SATA) hard disk drives, some support power-up in standby or PUIS. The hard disk drive will not spin up until the controller or system BIOS issues a specific command to do so. This limits the power draw or consumption upon power on.

* Some SATA II hard disk drives support staggered spin-up, allowing the computer to spin up the drives in sequence to reduce load on the power supply when booting.

Hard disk drives are accessed over one of a number of bus types, including parallel ATA (P-ATA, also called IDE or EIDE), Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), and Fibre Channel. Bridge circuitry is sometimes used to connect hard disk drives to buses that they cannot communicate with natively, such as IEEE 1394, USB and SCSI.

For the ST-506 interface, the data encoding scheme as written to the disk surface was also important. The first ST-506 disks used Modified Frequency Modulation (MFM) encoding, and transferred data at a rate of 5 megabits per second. Later controllers using 2,7 RLL (or just “RLL”) encoding caused 50% more data to appear under the heads compared to one rotation of an MFM drive, increasing data storage and data transfer rate by 50%, to 7.5 megabits per second.

Many ST-506 interface disk drives were only specified by the manufacturer to run at the 1/3 lower MFM data transfer rate compared to RLL, while other drive models (usually more expensive versions of the same drive) were specified to run at the higher RLL data transfer rate. In some cases, a drive had sufficient margin to allow the MFM specified model to run at the denser/faster RLL data transfer rate (not recommended nor guaranteed by manufacturers). Also, any RLL-certified drive could run on any MFM controller, but with 1/3 less data capacity and as much as 1/3 less data transfer rate compared to its RLL specifications.

Enhanced Small Disk Interface (ESDI) also supported multiple data rates (ESDI disks always used 2,7 RLL, but at 10, 15 or 20 megabits per second), but this was usually negotiated automatically by the disk drive and controller; most of the time, however, 15 or 20 megabit ESDI disk drives were not downward compatible (i.e. a 15 or 20 megabit disk drive would not run on a 10 megabit controller). ESDI disk drives typically also had jumpers to set the number of sectors per track and (in some cases) sector size.

Modern hard drives present a consistent interface to the rest of the computer, no matter what data encoding scheme is used internally. Typically a DSP in the electronics inside the hard drive takes the raw analog voltages from the read head and uses PRML and Reed–Solomon error correction to decode the sector boundaries and sector data, then sends that data out the standard interface. That DSP also watches the error rate detected by error detection and correction, and performs bad sector remapping, data collection for Self-Monitoring, Analysis, and Reporting Technology, and other internal tasks.

SCSI originally had just one signaling frequency of 5 MHz for a maximum data rate of 5 megabytes/second over 8 parallel conductors, but later this was increased dramatically. The SCSI bus speed had no bearing on the disk’s internal speed because of buffering between the SCSI bus and the disk drive’s internal data bus; however, many early disk drives had very small buffers, and thus had to be reformatted to a different interleave (just like ST-506 disks) when used on slow computers, such as early Commodore Amiga, IBM PC compatibles and Apple Macintoshes.

ATA disks have typically had no problems with interleave or data rate, due to their controller design, but many early models were incompatible with each other and could not run with two devices on the same physical cable in a master/slave setup. This was mostly remedied by the mid-1990s, when ATA’s specification was standardized and the details began to be cleaned up, but still causes problems occasionally (especially with CD-ROM and DVD-ROM disks, and when mixing Ultra DMA and non-UDMA devices).

Serial ATA does away with master/slave setups entirely, placing each disk on its own channel (with its own set of I/O ports) instead.

FireWire/IEEE 1394 and USB(1.0/2.0) HDDs are external units containing generally ATA or SCSI disks with ports on the back allowing very simple and effective expansion and mobility. Most FireWire/IEEE 1394 models are able to daisy-chain in order to continue adding peripherals without requiring additional ports on the computer itself. USB however, is a point to point network and does not allow for daisy-chaining. USB hubs are used to increase the number of available ports and are used for devices that do not require charging since the current supplied by hubs is typically lower than what’s available from the built-in USB ports.

External removable hard disk drives offer independence from system integration, establishing communication via connectivity options, such as USB.

Plug and play drive functionality offers system compatibility, and features large volume data storage options, but maintains a portable design.

These drives with an ability to function and be removed simplistically, have had further applications due their flexibility. These include:

* Disk cloning

* Data storage

* Data recovery

* Backup of files and information

* Storing and running virtual machines

* Scratch disk for video editing applications and video recording

* Booting operating systems (e.g. Linux, Windows – a.k.a. Live USB)

External hard disk drives are available in two main sizes (physical size), 2.5″ and 3.5″.

Features such as biometric security or multiple interfaces are available at a higher cost.

A hard disk drive (HDD; also hard drive or hard disk) is a non-volatile, random access digital magnetic data storage device. It features rotating rigid platters on a motor-driven spindle within a protective enclosure. Data is magnetically read from and written to the platter by read/write heads that float on a film of air above the platters. Introduced by IBM in 1956, hard disk drives have decreased in cost and physical size over the years while dramatically increasing in capacity.

Driven by areal density doubling every two to four years since their invention, HDDs have changed in many ways. A few highlights include:

* Capacity per HDD increasing from 3.75 megabytes to greater than 1 terabyte, a greater than 270-thousand-to-1 improvement.
* Size of HDD decreasing from 87.9 cubic feet (a double wide refrigerator) to 0.002 cubic feet (2½-inch form factor, a pack of cards), a greater than 44-thousand-to-1 improvement.
* Price decreasing from about $15,000 per megabyte to less than $0.0001 per megabyte ($100/1 terabyte), a greater than 150-million-to-1 improvement.
* Average access time decreasing from greater than 0.1 second to a few thousandths of a second, a greater than 40-to-1 improvement.
* Market application expanding from general purpose computers to most computing applications including consumer applications.

HDDs record data by magnetizing ferromagnetic material directionally. Sequential changes in the direction of magnetization represent patterns of binary data bits. The data are read from the disk by detecting the transitions in magnetization and decoding the originally written data. Different encoding schemes, such as modified frequency modulation, group code recording, run-length limited encoding, and others are used.

A typical HDD design consists of a spindle that holds flat circular disks, also called platters, which hold the recorded data. The platters are made from a non-magnetic material, usually aluminum alloy, glass, or ceramic, and are coated with a shallow layer of magnetic material typically 10–20 nm in depth, with an outer layer of carbon for protection. For reference, a standard piece of copy paper is 0.07–0.18 millimetre (70,000–180,000 nm)

The platters are spun at speeds varying from 4,200 rpm in energy-efficient portable devices, to 15,000 rpm for high performance servers. Information is written to, and read from a platter as it rotates past devices called read-and-write heads that operate very close (tens of nanometers in new drives) over the magnetic surface. The read-and-write head is used to detect and modify the magnetization of the material immediately under it. In modern drives there is one head for each magnetic platter surface on the spindle, mounted on a common arm. An actuator arm (or access arm) moves the heads on an arc (roughly radially) across the platters as they spin, allowing each head to access almost the entire surface of the platter as it spins. The arm is moved using a voice coil actuator or in some older designs a stepper motor.

The magnetic surface of each platter is conceptually divided into many small sub-micrometer-sized magnetic regions referred to as magnetic domains. In older disk designs the regions were oriented horizontally and parallel to the disk surface, but beginning about 2005, the orientation was changed to perpendicular to allow for closer magnetic domain spacing. Due to the polycrystalline nature of the magnetic material each of these magnetic regions is composed of a few hundred magnetic grains. Magnetic grains are typically 10 nm in size and each form a single magnetic domain. Each magnetic region in total forms a magnetic dipole which generates a magnetic field.

For reliable storage of data, the recording material needs to resist self-demagnetization, which occurs when the magnetic domains repel each other. Magnetic domains written too densely together to a weakly magnetizable material will degrade over time due to physical rotation of one or more domains to cancel out these forces. The domains rotate sideways to a halfway position that weakens the readability of the domain and relieves the magnetic stresses. Older hard disks used iron(III) oxide as the magnetic material, but current disks use a cobalt-based alloy

A write head magnetizes a region by generating a strong local magnetic field. Early HDDs used an electromagnet both to magnetize the region and to then read its magnetic field by using electromagnetic induction. Later versions of inductive heads included metal in Gap (MIG) heads and thin film heads. As data density increased, read heads using magnetoresistance (MR) came into use; the electrical resistance of the head changed according to the strength of the magnetism from the platter. Later development made use of spintronics; in these heads, the magnetoresistive effect was much greater than in earlier types, and was dubbed “giant” magnetoresistance (GMR). In today’s heads, the read and write elements are separate, but in close proximity, on the head portion of an actuator arm. The read element is typically magneto-resistive while the write element is typically thin-film inductive.

The heads are kept from contacting the platter surface by the air that is extremely close to the platter; that air moves at or near the platter speed. The record and playback head are mounted on a block called a slider, and the surface next to the platter is shaped to keep it just barely out of contact. This forms a type of air bearing.

In modern drives, the small size of the magnetic regions creates the danger that their magnetic state might be lost because of thermal effects. To counter this, the platters are coated with two parallel magnetic layers, separated by a 3-atom layer of the non-magnetic element ruthenium, and the two layers are magnetized in opposite orientation, thus reinforcing each other. Another technology used to overcome thermal effects to allow greater recording densities is perpendicular recording, first shipped in 2005, and as of 2007 the technology was used in many HDDs.

A typical hard disk drive has two electric motors; a disk motor that spins the disks and an actuator (motor) that positions the read/write head assembly across the spinning disks.

Opposite the actuator at the end of the head support arm is the read-write head (near center in photo); thin printed-circuit cables connect the read-write heads to amplifier electronics mounted at the pivot of the actuator. A flexible, somewhat U-shaped, ribbon cable, seen edge-on below and to the left of the actuator arm continues the connection to the controller board on the opposite side.

The head support arm is very light, but also stiff; in modern drives, acceleration at the head reaches 550 g.

Modern drives also make extensive use of Error Correcting Codes (ECCs), particularly Reed–Solomon error correction. These techniques store extra bits for each block of data that are determined by mathematical formulas. The extra bits allow many errors to be fixed. While these extra bits take up space on the hard drive, they allow higher recording densities to be employed, resulting in much larger storage capacity for user data. In 2009, in the newest drives, low-density parity-check codes (LDPC) are supplanting Reed-Solomon. LDPC codes enable performance close to the Shannon Limit and thus allow for the highest storage density available

The capacity of hard disk drives is given by manufacturers in megabytes (1 MB = 1,000,000 bytes), gigabytes (1 GB = 1,000,000,000 bytes) or terabytes (1 TB = 1,000,000,000,000 bytes). This numbering convention, where prefixes like mega- and giga- denote powers of 1000, is also used for data transmission rates and DVD capacities. However, the convention is different from that used by manufacturers of memory (RAM, ROM) and CDs, where prefixes like kilo- and mega- mean powers of 1024.

Advertised capacity
by manufacturer
(using decimal multiples)
Expected capacity
by consumers in class action
(using binary multiples)
Reported capacity
Windows
(using binary
multiples)
Mac OS X 10.6+
(using decimal
multiples)
With prefix Bytes Bytes Diff.
100 MB 100,000,000 104,857,600 4.86% 95.4 MB 100.0 MB
100 GB 100,000,000,000 107,374,182,400 7.37% 93.1 GB, 95,367 MB 100.00 GB
TB 1,000,000,000,000 1,099,511,627,776 9.95% 931 GB, 953,674 MB 1,000.00 GB

 

Current hard disk form factors

Form factor Width Height Largest capacity Platters (Max)
3.5″ 102 mm 19 or 25.4 mm 4 TB (2011) 5
2.5″ 69.9 mm 7, 9.5, 11.5, or 15 mm 1.5 TB (2010) 4
1.8″ 54 mm 5 or 8 mm 320 GB (2009) 3

Obsolete hard disk form factors

Form factor Width Largest capacity Platters (Max)
5.25″ FH 146 mm 47 GB(1998) 14
5.25″ HH 146 mm 19.3 GB (1998) 4
1.3″ 43 mm 40 GB(2007) 1
1″ (CFII/ZIF/IDE-Flex) 42 mm 20 GB (2006) 1
0.85″ 24 mm 8 GB(2004) 1
Rotational speed
[rpm]
Average
latency [ms]
15000 2
10000 3
7200 4.16
5400 5.55
4800 6.25

An HDD‘s Average Access Time is its average Seek time which technically is the time to do all possible seeks divided by the number of all possible seeks, but in practice is determined by statistical methods or simply approximated as the time of a seek over one-third of the number of tracks

Defragmentation is a procedure used to minimize delay in retrieving data by moving related items to physically proximate areas on the disk. Some computer operating systems perform defragmentation automatically. Although automatic defragmentation is intended to reduce access delays, the procedure can slow response when performed while the computer is in use.

Access time can be improved by increasing rotational speed, thus reducing latency and/or by decreasing seek time. Increasing areal density increases throughput by increasing data rate and by increasing the amount of data under a set of heads, thereby potentially reducing seek activity for a given amount of data. Based on historic trends, analysts predict a future growth in HDD areal density (and therefore capacity) of about 40% per year. Access times have not kept up with throughput increases, which themselves have not kept up with growth in storage capacity.

Sector interleave is a mostly obsolete device characteristic related to access time, dating back to when computers were too slow to be able to read large continuous streams of data. Interleaving introduced gaps between data sectors to allow time for slow equipment to get ready to read the next block of data. Without interleaving, the next logical sector would arrive at the read/write head before the equipment was ready, requiring the system to wait for another complete disk revolution before reading could be performed.

However, because interleaving introduces intentional physical delays into the drive mechanism, setting the interleave to a ratio higher than required causes unnecessary delays for equipment that has the performance needed to read sectors more quickly. The interleaving ratio was therefore usually chosen by the end-user to suit their particular computer system’s performance capabilities when the drive was first installed in their system.

Average seek time ranges from 3 ms for high-end server drives, to 15 ms for mobile drives, with the most common mobile drives at about 12 ms and the most common desktop type typically being around 9 ms. The first HDD had an average seek time of about 600 ms and by the middle 1970s HDDs were available with seek times of about 25 ms. Some early PC drives used a stepper motor to move the heads, and as a result had seek times as slow as 80–120 ms, but this was quickly improved by voice coil type actuation in the 1980s, reducing seek times to around 20 ms. Seek time has continued to improve slowly over time.

Latency is the delay for the rotation of the disk to bring the required disk sector under the read-write mechanism. It depends on rotational speed of a disk, measured in revolutions per minute (rpm). Average rotational latency is shown in the table below, based on the empirical relation that the average latency in milliseconds for such a drive is one-half the rotational period.

As of 2010, a typical 7200 rpm desktop hard drive has a sustained “disk-to-buffer” data transfer rate up to 1030 Mbits/sec. This rate depends on the track location, so it will be higher for data on the outer tracks (where there are more data sectors) and lower toward the inner tracks (where there are fewer data sectors); and is generally somewhat higher for 10,000 rpm drives. A current widely used standard for the “buffer-to-computer” interface is 3.0 Gbit/s SATA, which can send about 300 megabyte/s (10 bit encoding) from the buffer to the computer, and thus is still comfortably ahead of today’s disk-to-buffer transfer rates. Data transfer rate (read/write) can be measured by writing a large file to disk using special file generator tools, then reading back the file. Transfer rate can be influenced by file system fragmentation and the layout of the files

HDD data transfer rate depends upon the rotational speed of the platters and the data recording density. Because heat and vibration limit rotational speed, advancing density becomes the main method to improve sequential transfer rates. While areal density advances by increasing both the number of tracks across the disk and the number of sectors per track, only the latter will increase the data transfer rate for a given rpm. Since data transfer rate performance only tracks one of the two components of areal density, its performance improves at a lower rate.

* On SCSI hard disk drives, the SCSI controller can directly control spin up and spin down of the drives.

* On Parallel ATA (aka PATA) and Serial ATA (SATA) hard disk drives, some support power-up in standby or PUIS. The hard disk drive will not spin up until the controller or system BIOS issues a specific command to do so. This limits the power draw or consumption upon power on.

* Some SATA II hard disk drives support staggered spin-up, allowing the computer to spin up the drives in sequence to reduce load on the power supply when booting.

Hard disk drives are accessed over one of a number of bus types, including parallel ATA (P-ATA, also called IDE or EIDE), Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), and Fibre Channel. Bridge circuitry is sometimes used to connect hard disk drives to buses that they cannot communicate with natively, such as IEEE 1394, USB and SCSI.

For the ST-506 interface, the data encoding scheme as written to the disk surface was also important. The first ST-506 disks used Modified Frequency Modulation (MFM) encoding, and transferred data at a rate of 5 megabits per second. Later controllers using 2,7 RLL (or just “RLL”) encoding caused 50% more data to appear under the heads compared to one rotation of an MFM drive, increasing data storage and data transfer rate by 50%, to 7.5 megabits per second.

Many ST-506 interface disk drives were only specified by the manufacturer to run at the 1/3 lower MFM data transfer rate compared to RLL, while other drive models (usually more expensive versions of the same drive) were specified to run at the higher RLL data transfer rate. In some cases, a drive had sufficient margin to allow the MFM specified model to run at the denser/faster RLL data transfer rate (not recommended nor guaranteed by manufacturers). Also, any RLL-certified drive could run on any MFM controller, but with 1/3 less data capacity and as much as 1/3 less data transfer rate compared to its RLL specifications.

Enhanced Small Disk Interface (ESDI) also supported multiple data rates (ESDI disks always used 2,7 RLL, but at 10, 15 or 20 megabits per second), but this was usually negotiated automatically by the disk drive and controller; most of the time, however, 15 or 20 megabit ESDI disk drives were not downward compatible (i.e. a 15 or 20 megabit disk drive would not run on a 10 megabit controller). ESDI disk drives typically also had jumpers to set the number of sectors per track and (in some cases) sector size.

Modern hard drives present a consistent interface to the rest of the computer, no matter what data encoding scheme is used internally. Typically a DSP in the electronics inside the hard drive takes the raw analog voltages from the read head and uses PRML and Reed–Solomon error correction to decode the sector boundaries and sector data, then sends that data out the standard interface. That DSP also watches the error rate detected by error detection and correction, and performs bad sector remapping, data collection for Self-Monitoring, Analysis, and Reporting Technology, and other internal tasks.

SCSI originally had just one signaling frequency of 5 MHz for a maximum data rate of 5 megabytes/second over 8 parallel conductors, but later this was increased dramatically. The SCSI bus speed had no bearing on the disk’s internal speed because of buffering between the SCSI bus and the disk drive’s internal data bus; however, many early disk drives had very small buffers, and thus had to be reformatted to a different interleave (just like ST-506 disks) when used on slow computers, such as early Commodore Amiga, IBM PC compatibles and Apple Macintoshes.

ATA disks have typically had no problems with interleave or data rate, due to their controller design, but many early models were incompatible with each other and could not run with two devices on the same physical cable in a master/slave setup. This was mostly remedied by the mid-1990s, when ATA’s specification was standardized and the details began to be cleaned up, but still causes problems occasionally (especially with CD-ROM and DVD-ROM disks, and when mixing Ultra DMA and non-UDMA devices).

Serial ATA does away with master/slave setups entirely, placing each disk on its own channel (with its own set of I/O ports) instead.

FireWire/IEEE 1394 and USB(1.0/2.0) HDDs are external units containing generally ATA or SCSI disks with ports on the back allowing very simple and effective expansion and mobility. Most FireWire/IEEE 1394 models are able to daisy-chain in order to continue adding peripherals without requiring additional ports on the computer itself. USB however, is a point to point network and does not allow for daisy-chaining. USB hubs are used to increase the number of available ports and are used for devices that do not require charging since the current supplied by hubs is typically lower than what’s available from the built-in USB ports.

External removable hard disk drives offer independence from system integration, establishing communication via connectivity options, such as USB.

Plug and play drive functionality offers system compatibility, and features large volume data storage options, but maintains a portable design.

These drives with an ability to function and be removed simplistically, have had further applications due their flexibility. These include:

* Disk cloning

* Data storage

* Data recovery

* Backup of files and information

* Storing and running virtual machines

* Scratch disk for video editing applications and video recording

* Booting operating systems (e.g. Linux, Windows – a.k.a. Live USB)

External hard disk drives are available in two main sizes (physical size), 2.5″ and 3.5″.

Features such as biometric security or multiple interfaces are available at a higher cost.

Related External Links

This entry was posted in Notes and tagged , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>