DIMM




DIMM

A DIMM or dual in-line memory module comprises a series of dynamic random-access memory integrated circuits. These modules are mounted on a printed circuit board and designed for use in personal computers, workstations and servers. DIMMs began to replace SIMMs (single in-line memory modules) as the predominant type of memory module as Intel P5-based Pentium processors began to gain market share. Several form factors are commonly used in DIMMs.

DIMMs are often referred to as “single-sided” or “double-sided” to describe whether the DRAM chips are located on one or both sides of the module’s printed circuit board (PCB). However, these terms may cause confusion, as the physical layout of the chips does not necessarily relate to how they are logically organized or accessed.

While the contacts on SIMMs on both sides are redundant, DIMMs have separate electrical contacts on each side of the module. Another difference is that standard SIMMs have a 32-bit data path, while standard DIMMs have a 64-bit data path. Since Intel’s Pentium, many processors have a 64-bit bus width, requiring SIMMs installed in matched pairs in order to populate the data bus. The processor would then access the two SIMMs in parallel. DIMMs were introduced to eliminate this disadvantage.

On the bottom edge of 168-pin DIMMs there are two notches, and the location of each notch determines a particular feature of the module. The first notch is the DRAM key position, which represents RFU (reserved future use), registered, and unbuffered DIMM types (left, middle and right position, respectively). The second notch is the voltage key position, which represents 5.0 V, 3.3 V, and RFU DIMM types.

A DIMM’s capacity and other operational parameters may be identified with serial presence detect (SPD), an additional chip which contains information about the module type and timing for the memory controller to be configured correctly. The SPD EEPROM connects to the System Management Bus and may also contain thermal sensors.

ECC DIMMs are those that have extra data bits which can be used by the system memory controller to detect and correct errors. There are numerous ECC schemes, but perhaps the most common is Single Error Correct, Double Error Detect (SECDED) which uses an extra byte per 64-bit word. ECC modules usually carry a multiple of 9 instead of a multiple of 8 chips.

Sometimes memory modules are designed with two or more independent sets of DRAM chips connected to the same address and data buses; each such set is called a rank. Since all ranks share the same buses, only one rank may be accessed at any given time; it is specified by activating the corresponding rank’s chip select (CS) signal. All other ranks are deactivated for the duration of the operation by having their corresponding CS signals deactivated. DIMMs are currently being commonly manufactured with up to four ranks per module. Consumer DIMM vendors have recently begun to distinguish between single and dual ranked DIMMs.

After a memory word is fetched, the memory is typically inaccessible for an extended period of time while the sense amplifiers are charged for access of the next cell. By interleaving the memory (e.g. cells 0, 4, 8, etc. are stored together in one rank), sequential memory accesses can be performed more rapidly because sense amplifiers have 3 cycles of idle time for recharging, between accesses.

DIMMs based on Single Data Rate (SDR) DRAM have the same bus frequency for data, address and control lines. DIMMs based on Double Data Rate (DDR) DRAM have data but not the strobe at double the rate of the clock; this is achieved by clocking on both the rising and falling edge of the data strobes. Power consumption and voltage gradually became lower with each generation of DDR-based DIMMs

Common types of DIMMs include the following:

70 to 200 pins

72-pin SO-DIMM (not the same as a 72-pin SIMM), used for FPM DRAM and EDO DRAM
100-pin DIMM, used for printer SDRAM
144-pin SO-DIMM, used for SDR SDRAM (less frequently for DDR2 SDRAM)
168-pin DIMM, used for SDR SDRAM (less frequently for FPM/EDO DRAM in workstations/servers, may be 3.3 or 5 V)
172-pin MicroDIMM, used for DDR SDRAM
184-pin DIMM, used for DDR SDRAM
200-pin SO-DIMM, used for DDR SDRAM and DDR2 SDRAM
200-pin DIMM, used for FPM/EDO DRAM in some Sun workstations and servers.

201 to 300 pins

204-pin SO-DIMM, used for DDR3 SDRAM
214-pin MicroDIMM, used for DDR2 SDRAM
240-pin DIMM, used for DDR2 SDRAM, DDR3 SDRAM and FB-DIMM DRAM
244-pin MiniDIMM, used for DDR2 SDRAM
260-pin SO-DIMM, used for DDR4 SDRAM
260-pin SO-DIMM, with different notch position than on DDR4 SO-DIMMs, used for UniDIMMs that can carry either DDR3 or DDR4 SDRAM
278-pin DIMM, used for HP high density SDRAM.
288-pin DIMM, used for DDR4 SDRAM

This entry was posted in Notes and tagged . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>