Electrostatic discharge is a serious issue in solid state electronics, such as integrated circuits. Many ESD events occur without a visible or audible spark. A person carrying a relatively small electric charge may not feel a discharge that is sufficient to damage sensitive electronic components. Some devices may be damaged by discharges as small as 30V. These invisible forms of ESD can cause outright device failures, or less obvious forms of degradation that may affect the long term reliability and performance of electronic devices. The degradation in some devices may not become evident until well into their service life.


Static electricity is often generated through tribocharging, the separation of electric charges that occurs when two materials are brought into contact and then separated. Examples of tribocharging include walking on a rug, rubbing a plastic comb against dry hair, rubbing a balloon against a sweater, ascending from a fabric car seat, or removing some types of plastic packaging. In all these cases, the friction between two materials results in tribocharging, thus creating a difference of electrical potential that can lead to an ESD event.

Another cause of ESD damage is through electrostatic induction. This occurs when an electrically charged object is placed near a conductive object isolated from ground. The presence of the charged object creates an electrostatic field that causes electrical charges on the surface of the other object to redistribute. Even though the net electrostatic charge of the object has not changed, it now has regions of excess positive and negative charges. An ESD event may occur when the object comes into contact with a conductive path. For example, charged regions on the surfaces of styrofoam cups or bags can induce potential on nearby ESD sensitive components via electrostatic induction and an ESD event may occur if the component is touched with a metallic tool.


A spark is triggered when the electric field strength exceeds approximately 4–30 kV/cm — the dielectric field strength of air. This may cause a very rapid increase in the number of free electrons and ions in the air, temporarily causing the air to abruptly become an electrical conductor in a process called dielectric breakdown.

A corona discharge occurs between a highly curved electrode, for example the tip of a needle or a small diameter wire, and an electrode of low curvature such as a flat plate. The high curvature produces a high potential gradient around one electrode.

A brush discharge occurs between an electrode with a curvature between 5 mm and 50 mm and a voltage of about 500 kV/m.The resulting discharge paths have the shape of a brush.

Related External Links

This entry was posted in Network, Notes, PC Protection and tagged , , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>