WHAT IS A VOLT AND HOW DOES IT RELATE TO VOLTAGE?






A single volt is defined as the difference in electric potential across a wire when an electric current of one ampere dissipates one watt of power. It is also equal to the potential difference between two parallel, infinite planes spaced 1 meter apart that create an electric field of 1 newton per coulomb. Additionally, it is the potential difference between two points that will impart one joule of energy per coulomb of charge that passes through it

Voltage, otherwise known as electrical potential difference or electric tension (denoted ∆V and measured in volts, or joules per coulomb) is the potential difference between two points — or the difference in electric potential energy per unit charge between two points. Voltage is equal to the work which would have to be done, per unit charge, against a static electric field to move the charge between two points. A voltage may represent either a source of energy (electromotive force), or it may represent lost or stored energy (potential drop). A voltmeter can be used to measure the voltage (or potential difference) between two points in a system; usually a common reference potential such as the ground of the system is used as one of the points. Voltage can be caused by static electric fields, by electric current through a magnetic field, by time-varying magnetic fields, or a combination of all three.

A simple analogy for an electric circuit is water flowing in a closed circuit of pipework, driven by a mechanical pump. This can be called a water circuit. Potential difference between two points corresponds to the water pressure difference between two points. If there is a water pressure difference between two points (due to the pump), then water flowing from the first point to the second will be able to do work, such as driving a turbine. In a similar way, work can be done by the electric current driven by the potential difference due to an electric battery: for example, the current generated by an automobile battery can drive the starter motor in an automobile. If the pump isn’t working, it produces no pressure difference, and the turbine will not rotate. Equally, if the automobile’s battery is flat, then it will not turn the starter motor.

This entry was posted in Notes and tagged , , , , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>